EL SEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and biological evaluation of N-mercaptoacylcysteine derivatives as leukotriene A_4 hydrolase inhibitors

Hiroshi Enomoto*, Yuko Morikawa, Yurika Miyake, Fumio Tsuji, Maki Mizuchi, Hiroshi Suhara, Ken-ichi Fujimura, Masato Horiuchi, Masakazu Ban

Nara Research & Development Center, Santen Pharmaceutical Co., Ltd, 8916-16 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan

ARTICLE INFO

Article history:
Received 6 October 2008
Revised 10 November 2008
Accepted 13 November 2008
Available online 18 November 2008

Keywords: LTA4 hydrolase LTA4 hydrolase inhibitor Epoxide hydrolase N-Mercaptoacylcysteine

ABSTRACT

We studied synthetic modifications of *N*-mercaptoacylamino acid derivatives to develop a new class of leukotriene A₄ (LTA₄) hydrolase inhibitors. *S*-(4-Dimethylamino)benzyl-L-cysteine derivative **2a** (SA6541) showed inhibitory activity against LTA₄ hydrolase (IC₅₀, 270 nM) and selectivity over other metallopeptidases except angiotensin-converting enzyme (ACE, IC₅₀, 520 nM). Modification at the *para*-substituent of the phenyl ring of compound **2a** improved LTA₄ hydrolase inhibitory activity as well as selectivity over ACE. Finally, we obtained *S*-(4-cyclohexyl)benzy-L-cysteine derivatives **111** and **16i** as potent and selective LTA₄ hydrolase inhibitors.

© 2008 Elsevier Ltd. All rights reserved.

Leukotriene A_4 (LTA₄) hydrolase (EC 3.3.2.6) is a bifunctional zinc-containing metalloenzyme. One of its functions is a highly substrate-specific epoxide hydrolase activity, which involves converting an unstable epoxide fatty acid derivative LTA₄ into a diol leukotriene B_4 (LTB₄), a potent proinflammatory mediator. This catalytic reaction is the final and rate-determining step in LTB₄ biosynthesis. Therefore, inhibition of LTA₄ hydrolase would be a suitable approach for treatment of a variety of inflammatory diseases. Another function is its intrinsic arginyl aminopeptidase activity. The biological role of which has not been elucidated thus far. A_4

Previously, we reported that 4-arylalkylthio-*N*-[(2*S*)-3-mercapto-2-methylpropionyl]-L-proline derivatives had inhibitory activities against LTA₄ hydrolase. Compounds **1a** and **1b**, in particular, exhibited more potent and selective inhibitory activities against the enzyme than its lead compound, captopril (Fig. 1).⁴ This result prompted us to obtain more selective LTA₄ hydrolase inhibitors. On the basis of a previous study⁴ and structural similarities to the zinc-containing metalloenzyme, we had screened other ACE inhibitors, *N*-mercaptoacylamino acid derivatives,⁵ for inhibitory activities against LTA₄ hydrolase.^{4,6,7a} Among the derivatives, we found that *S*-(4-dimethylamino)benzyl-L-cysteine derivative **2a** (SA6541, Fig. 1) possessed the desired inhibitory activity^{7a} (Table 1).

Compound **2a** exhibited good anti-inflammatory effects after oral administration in murine.⁷ Although the compound showed

Compound **2a** and all the compounds listed in Table 2–5 were synthesized as below. Synthesis of **2a** was conducted as shown in Scheme 1.^{7a} 4-Dimethylaminobenzyl alcohol **3** was treated with

Figure 1. Structures of 4-arylalkylthio-*N*-[(2*S*)-3-mercapto-2-methylpropionyl]-L-proline derivatives and compound **2a** (SA6541).

selectivity over other metallopeptidases, it still retained the ACE⁸ inhibitory activity (Table 1). Therefore, we synthesized a new series of *N*-mercaptoacylamino acid derivatives to develop more potent and more selective LTA₄ hydrolase inhibitors than compound **2a**.

^{*} Corresponding author. Tel.: +81 743 79 4527; fax: +81 743 79 4608. E-mail address: hiroshi.enomoto@santen.co.jp (H. Enomoto).

 Table 1

 Inhibitory activities of compound 2a against other metallopeptidases

Enzyme	Compound 2a		
	IC_{50} or % inhibition at 100 μM		
LTA ₄ hydrolase	0.27 μΜ		
Angiotensin-converting enzyme	0.52 μΜ		
Aminopeptidase M	42%		
Endopeptidase 24.11	16%		
Endothelin-1 converting enzyme	8%		
Type I collagenase	3%		
Type III collagenase	No inhibition		

Table 2 \mathbb{R}^1 modifications of N-[(2S)-3-mercapto-2-methylpropionyl]amino acid

Compound	-R ¹	IC ₅₀ (nM) LTA ₄ hydrolase
2a (SA6541)	S	270
2b	S	>10,000
2c	S	>10,000
2d	₹ _s	>10,000
2e	• S	>10,000

hydrobromic acid, followed by the reaction of resultant bromide **4** with *N*-Boc-L-cysteine to give *N*-Boc-*S*-(4-dimethylamino)benzyl-L-cysteine **5**. After removing the *N*-Boc group of compound **5**, coupling reactions with 4-nitrophenyl (2*S*)-3-benzoylthio-2-methylpropionate⁴ gave *N*-[(2*S*)-3-benzoylthio-2-methylpropionyl]-*S*-(4-dimethylamino)benzyl-L-cysteine **6**. Ammonolysis of compound **6** gave *S*-(4-dimethylamino)benzy-*N*-[(2*S*)-3-mercapto-2-methylpropionyl]-L-cysteine **2a**.

Compounds **2b-e** (Table 2), **7a-g** (Table 3), and **11q** (Table 4) were prepared in a similar way as compound **2a**. Compound **2b** was obtained via coupling reaction of *S*-benzyl-L-cysteine with 4-nitrophenyl (2*S*)-3-benzoylthio-2-methylpropionate to give *N*-[(2*S*)-3-benzoylthio-2-methylpropionyl]-*S*-benzyl-L-cysteine followed by deprotection with aqueous ammonia yielding the desired compound. Synthesis of compounds **2c** and **11q** was conducted with 3-dimethylaminobenzyl alcohol and 4-diethylaminobenzyl alcohol as starting materials, respectively. Compounds **2d** and **2e** were

Table 3 R^2 modifications of *S*-(4-dimethylamino)benzyl-L-cysteine

	ı	
Compound	R ² -	IC ₅₀ (nM)
		LTA ₄ hydrolase
7a	HS O	470
7b	HS	>10,000
7c	HS O	>10,000
7d	HS	>10,000
2a (SA6541)	HS	270
7e	HS	1500
7f	HS	7400
7g	HS	>10,000

prepared from *N*-Boc-D-cysteine and *N*-Boc-L-homocysteine, respectively. Introduction of the R² moieties of compounds **7a**–**g** was accomplished by using corresponding active esters derived from *S*-benzoylthioalkanoic acids⁹ instead of 4-nitrophenyl (2*S*)-3-benzoylthio-2-methylpropionate in Scheme 1.

Syntheses of compounds **11a–p** and **11r–u** in Table 4 were treated as shown in Scheme 2. Appropriate 4-substituted benzyl chlorides and bromides (**8a–p** and **8r–u**) were combined with L-cysteine in the presence of aqueous sodium hydroxide to yield S-(4-substituted)benzyl-L-cysteine derivatives **9a–p** and **9r–u**. The resultant compounds were then coupled with 4-nitrophenyl (2S)-3-benzoylthio-2-methylpropionate to yield N-[(2S)-3-benzoylthio-2-methylpropionyl]-S-(4-substituted)benzyl-L-cysteine derivatives (**10a–p** and **10r–u**). Reaction of compounds **10a–p** and **10r–u** with aqueous ammonia gave compounds **11a–p** and **11r–u**. Compound **12** (Table 5) was synthesized in a similar way by using L-penicillamine instead of L-cysteine.

Scheme 3 represents the synthesis of compounds **16a-i** (Table 5). Corresponding alcohols **13a-i** together with L-cysteine were treated with hydrochloric acid at 55–65 °C followed by *N*-Boc protection for isolation and purification by flash chromatography, yielding *N*-Boc-S-substituted-L-cysteine derivatives **14a-i**. After removing the *N*-Boc groups of **14a-i**, coupling reactions with 4-nitrophenyl (2S)-3-benzoylthio-2-methylpropionate gave

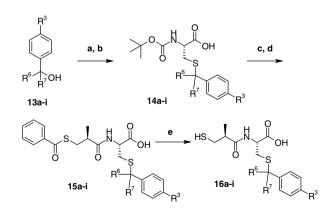
 Table 4

 R^3 modifications of S-benzyl-N-[(2S)-3-mercapto-2-methylpropionyl]-L-cysteine

Compound	\mathbb{R}^3	IC ₅₀ (nM)		
		LTA ₄ hydrolase	ACE	
2b	Н	>10,000	34	
11a	F	>10,000	100	
11b	Cl	1700	250	
11c	Br	610	280	
11d	I	15	140	
11e	CH ₃	7200	240	
11f	CF ₃	140	340	
11g	C_2H_5	280	21	
11h	n-Pr	72	210	
11i	i-Pr	200	300	
11j	t-Bu	24	130	
11k	Ph	600	280	
111	c-Hex	79	4000	
11m	OCH ₃	2400	100	
11n	OCF ₃	400	260	
11o	OC_2H_5	640	340	
11p	OPh	1700	370	
2a (SA6541)	$N(CH_3)_2$	270	520	
11q	$N(C_2H_5)_2$	900	4600	
11r	CN	530	300	
11s	NO_2	4900	320	
11t	SCH₃	46	300	
11u	SO ₂ CH ₃	160	300	

Table 5 R^3 , R^4 , R^5 , R^6 , and R^7 modifications of S-benzyl-N-[(2S)-3-mercapto-2-methylpropionyl]-L-cysteine

$$\begin{array}{c|c} HS & \begin{array}{c} H & O \\ N & \\ O \\ R^5 & S \\ \end{array} \\ R^6 & \begin{array}{c} R^6 \\ \end{array} \\ \end{array}$$


Compound	\mathbb{R}^3	R^4	R ⁵	R ⁶	R ⁷	IC ₅₀ (nM)	
						LTA ₄ hydrolase	ACE
11i	i-Pr	Н	Н	Н	Н	200	300
12	i-Pr	CH ₃	CH ₃	Н	Н	>10,000	>10,000
16a	i-Pr	Н	Н	Н	CH_3	55	200
16b	i-Pr	Н	Н	Н	C_2H_5	67	340
16c	i-Pr	Н	Н	Н	n-Pr	180	420
16d	i-Pr	Н	Н	Н	i-Pr	520	430
16e	i-Pr	Н	Н	Н	n-Bu	510	3600
16f	i-Pr	Н	Н	Н	Ph	91	1700
16g	i-Pr	Н	Н	CH ₃	CH ₃	79	260
111	c-Hex	Н	Н	Н	Н	79	4000
16h	c-Hex	Н	Н	Н	Ph	210	>10,000
16i	c-Hex	Н	Н	CH ₃	CH ₃	55	3000

N-[(2S)-3-benzoylthio-2-methylpropionyl]-S-(α -substituted-4-substituted)benzyl- ι -cysteine derivatives **15a-i**. A reaction of compounds **15a-i** with aqueous ammonia resulted in compounds **16a-i**.

Table 2 shows the effect of R^1 moiety of N-[(2S)-3-mercapto-2-methylpropionyl]amino acid derivatives. S-(4-dimethylamino)-benzyl-L-cysteine derivative **2a** (SA6541) exhibited LTA₄ hydrolase inhibitory activity. However, a regioisomer (**2c**), the epimer (**2d**) of

Scheme 1. Reagents and conditions: (a) 47% HBr aq 120 °C, 2.5 h; (b) Boc-L-Cys-OH, N,N-diisopropylethylamine, CH_2Cl_2 , rt, 2.5 h; (c) 4 M HCl in dioxane, rt, 1 h; (d) 4-nitrophenyl (2S)-3-benzoylthio-2-methylpropionate, triethylamine, DMF, CH_2Cl_2 , rt, overnight; (e) 28% NH_3 aq, rt, 1 h.

Scheme 2. Reagents and conditions: (a) L-Cysteine HCl·H₂O, 2 M NaOH aq, EtOH, CHCl₃, rt, overnight; (b) 4-nitrophenyl (2S)-3-benzoylthio-2-methylpropionate, triethylamine, DMF, rt, overnight; (c) 28% NH₃ aq, rt, 1 h.

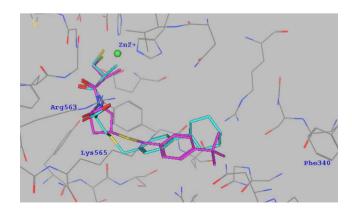
Scheme 3. Reagents and conditions: (a) 1-Cysteine HCl·H₂O, 2 M HCl aq, dioxane, 55-65 °C, overnight; (b) (Boc)₂O, triethylamine, THF, rt, 4 h; (c) 4 M HCl in dioxane, rt, 1 h; (d) 4-nitrophenyl (2S)-3-benzoylthio-2-methylpropionate, triethylamine, DMF, rt; (e) 28% NH₃ aq, rt, 1 h.

compound **2a** or the desdimethylamino analog (**2b**) did not show the inhibitory activity. Neither did the derivative of ι -homocysteine (**2e**) (IC₅₀ > 10,000 nM).

We then studied alterations in the *N*-mercaptoacyl moiety of the compound **2a** (Table 3). Introduction of the mercaptoacetyl group (**7a**) slightly reduced the inhibitory activity. Neither the 2-mercaptopropionyl group (**7b** and **7c**) nor the 3-mercaptopropionyl group

(**7d**) were efficacious for raising LTA₄ hydrolase inhibitory activity (IC₅₀ > 10,000 nM). Compound **7e**, the epimer of **2a**, decreased the activity. The 3-mercaptobutyryl group (**7f**) markedly reduced LTA₄ hydrolase inhibitory activity, and the 4-mercaptobutyryl group (**7g**) decreased it even further (IC₅₀ > 10,000 nM). These results suggest that the steric requirements of the enzyme surrounding the acyl moiety is highly stringent—much like those of *N*-mercaptoacyl-L-proline and (4*R*)-*N*-mercaptoacylthiazolidine-4-carboxylic acid derivatives which we previously reported.⁴

Since the S-benzyl-L-cysteine derivative 2b and the S-(3dimethylamino)benzyl-L-cysteine derivative 2c did not show inhibitory activities against LTA₄ hydrolase (Table 2), we made efforts only to introduce para-substituents (Table 4). Introduction of the fluorine atom (11a) did not appear to improve activity against LTA₄ hydrolase. An iodine atom (11d) created the most potent LTA₄ hydrolase inhibition in this series. Introduction of the methyl group (11e) contributed to only weak inhibitory activity against the enzyme and trifluoromethyl (11f), ethyl (11g), isopropyl (11i), and phenyl (11k) groups raised the activity moderately. Introduction of *n*-propyl (**11h**), *tert*-butyl (**11j**), and cyclohexyl (111) groups improved the activities further. Notably, compound **111** showed potent LTA₄ hydrolase inhibitory activity (IC₅₀; 79 nM) with a small inhibition against ACE (IC₅₀, 4000 nM). Introduction of alkoxy and phenoxy groups (11m-p), diethylamino (11q), cyano (11r), and nitro (11s) groups showed weak or moderate inhibitory activities against LTA4 hydrolase. Adoption of the methylthio group made the compound (11t) potent; however, the methanesulfonyl group (11u) did not. Quantitative structureactivity relationship (QSAR) analysis by multi-regression analysis of compounds 11b-u suggested a quadratic relation with mr (molar refractivity) of R³. The optimum value for inhibition was $mr_{opt} = 10.36$, which corresponded to **11j** ($R^3 = t$ -Bu).¹¹


To examine the effects of substituents at β - and δ -positions on the S-benzyl-L-cysteine moiety, we modified these portions of compound 11i. Though introduction of the gem-dimethyl group at the β -position (compound 12, Table 5) resulted in loss of activity $(IC_{50} > 10,000 \text{ nM})$, the same group at the δ -position improved the inhibitory activity against LTA₄ hydrolase (compound 16g, Table 5). Comparison of conformational energies $(\Delta E)^{12}$ among compounds 11i, 12 and 16g taking the active conformation (pose a), which will be discussed later, suggested that compound 12 had approximately 2-4 kcal/mol higher energy than the other two, a possible reason why compound 12 lost its inhibitory activity. Therefore, we focused on the modification at the benzyl (δ -methylene) position (R⁶ and R⁷, Table 5) of the S-benzyl-L-cysteine derivatives. Table 5 outlines these results. For those compounds with $R^3 = i$ -Pr, compounds **16a** ($R^6 = H$ and $R^7 = CH_3$), **16b** ($R^6 = H$ and $R^7 = C_2H_5$), **16f** ($R^6 = H$ and $R^7 = Ph$), and **16g** (R^6 and $R^7 = CH_3$) showed higher LTA₄ hydrolase inhibitory activities compared with that of compound **11i** (R^6 and R^7 = H). Among them, compound **16f** inhibited LTA₄ hydrolase with nineteen times more potency than ACE. LTA₄ hydrolase inhibitory activities of compounds 16d $(R^6 = H, R^7 = i\text{-Pr})$ and **16e** $(R^6 = H \text{ and } R^7 = n\text{-Bu})$ decreased a little. When R³ was a cyclohexyl, ACE inhibitory activity of compound **16h** (R^6 = H and R^7 = Ph) markedly decreased, however, maintaining LTA4 hydrolase inhibitory activity. A similar trend was also found for **111** (R^6 and R^7 = H) and **16i** (R^6 and R^7 = CH₃) compounds.

Structures of LTA₄ hydrolase analyzed by X-ray crystallography have been reported in which most ligands lie along the binding site of LTA₄ with a binding to catalytic Zn²⁺.^{13,14} Captopril, a weak LTA₄ hydrolase inhibitor, is also known to bind by its terminal S to Zn²⁺. Previously, we described possible binding poses in the enzyme of mercaptoacylproline derivatives **1a**, **1b**, and captopril as a reference.⁴ Their pyrrolidinyl and the mercaptoacyl parts were located over each other. In a similar way, docking poses within GOLD¹⁵ of several potent compounds (**11d**, **11j**, **11l**, and **11t**) were examined

(1H6S.pdb). Every compound bound to Arg563 by its carboxyl group, to Gly268 and Gly269 by its amide carbonyl O and to Zn²⁺ by its sulfhydryl S. Substituted benzyl portion elongated toward Phe340 and occupied a similar location within the pose a of compounds **1a** and **1b**⁴ (Fig. 2). Another pose, whose substituted benzyl part heading Arg568 was comparable to pose b of compounds 1a and 1b,4 was found for those except for compound 11l. In gem-dimethyl analogs, while active compounds (16g and 16i) docked in **a**- and **b**-like poses, inactive compound **12** did so only in **b**-like pose. This fact suggests that the binding of the active compounds occur in pose a. A docking study of compounds 2b and 11g into ACE (1UZF.pdb) gave analogous poses to **a** but not **b** in LTA₄ hydrolase. We also observed this pattern for the proline type inhibitor **1a** in its docking into ACE. Although estimation of binding free energies of compound 11j calculated by MM/GBSA¹⁶ did not give a clear preference between the two poses, five different runs indicated that pose **a** was more likely than **b**, and this tendency was also displayed by compound 1a. Consequently, as a binding pose (active conformation) of compound 11j as well as compound 1a, pose a is plausible.

The groove of LTA₄ hydrolase around the cyclohexylbenzylthio group of compound 111 in pose a was wide spread and comprised several amino acid residues (Asn291, Val322, Arg326, Glu348, Ser380, Glu384, and Lys565). However, the counterpart of ACE around compound 2b consisting of residues (Thr282, Val379, Val380, Asp415, Asp453, Lys454, and Phe527) was narrow and limited. Particularly, Glu376 extends its side chain to obscure the space. Table 4 displays these results. LTA₄ hydrolase inhibitory activity increased with increasing bulkiness of R³ from compound **2b** ($R^3 = H$) to compound **11j** ($R^3 = t$ -Bu). Interaction between R^3 and the surrounding amino acid residues will be essential to express activity since compound 2b had no activity. On the other hand, potent ACE inhibition was observed in compounds 2b and 11g, both with small R³. The inhibitory activity appeared to gradually decrease with increasing bulkiness of R3 and abruptly decreased in 111 and 11q. A large symmetrical substituent with respect to the bonding axis of R³ in compounds 111 and 11q may not be able to circumvent the Glu376 side chain to effectively bind to ACE. For the non-active compound (12) with a gem-dimethyl group at β-position, Lys565 may hamper binding to LTA₄ hydrolase in addition to yielding an unfavorable conformational energy. When R⁷ was large, the substituent would bump against His383 and Phe457 in ACE to reduce the inhibitory activity.

In conclusion, we studied synthetic modifications of the lead compound **2a** to develop potent and selective LTA₄ hydrolase inhibitors. Modification at the *para*-substituent of the phenyl ring of compound **2a** improved LTA₄ hydrolase inhibitory activity and made the iodo derivative **11d** the most potent (IC₅₀, 15 nM). Another modification at this position also improved selectivity for

Figure 2. Plausible poses (pose a) of compounds 1a (purple) and 11l (cyan) docked into LTA₄ hydrolase.

 LTA_4 hydrolase versus ACE. In particular, compounds **111** and **16i** containing cyclohexyl group exhibited potent LTA_4 hydrolase inhibitory activities (IC_{50} , 79 and 55 nM, respectively) with a small inhibition of ACE (IC_{50} , 4000 and 3000 nM, respectively).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008.11.042.

References and notes

- 1. Haeggström, J. Z. J. Biol. Chem. 2004, 279, 50639.
- Ford-Hutchinson, A. W.; Bray, M. A.; Doig, M. V.; Shipley, M. E.; Smith, M. J. H. Nature 1980, 286, 264.
- (a) Klickstein, L. B.; Shapleigh, C.; Goetzl, E. J. J. Clin. Invest. 1980, 66, 1166; (b) Iversen, L.; Kragballe, K.; Ziboh, V. A. Skin Pharmacol. 1997, 10, 169; (c) Sharon, P.; Stenson, W. F. Gastroenterology 1984, 86, 453; (d) Rae, S. A.; Davidson, E. M.; Smith, M. J. H. Lancet 1982, 11, 1122; (e) Bigby, T. D.; Lee, D. M.; Meslier, N.; Gruenert, D. C. Biochem. Biophys. Res. Commun. 1989, 164, 1.
- Enomoto, H.; Morikawa, Y.; Miyake, Y.; Tsuji, F.; Mizuchi, M.; Suhara, H.; Fujimura, K.; Horiuchi, M.; Ban, M. Bioorg. Med. Chem. Lett. 2008, 18, 4529.
- (a) Oya, M.; Matsumoto, J.; Takashina, H.; Iwao, J.; Funae, Y. Chem. Pharm. Bull.
 1981, 29, 63; (b) Oya, M.; Matsumoto, J.; Takashina, H.; Watanabe, T.; Iwao, J. Chem. Pharm. Bull.
 1981, 29, 940; (c) Oya, M.; Kato, E.; Matsumoto, J.; Kawashima, Y.; Iwao, J. Chem. Pharm. Bull.
 1981, 29, 1203.

- 6. Ohishi, N.; Izumi, T.; Minami, M.; Kitamura, S.; Seyama, Y.; Ohkawa, S.; Terao, S.; Yotsumoto, H.; Takaku, F.; Shimizu, T. J. Biol. Chem. 1987, 262, 10200. LTA₄ hydrolase was purified from guinea pig lung and subjected to the enzyme assay according to Ref. 6. IC₅₀ values were calculated by linear regression analysis of at least three independent dose–response titration of each compound in duplicate.
- (a) Tsuji, F.; Miyake, Y.; Horiuchi, M.; Mita, S. Biochem. Pharmacol. 1998, 55, 297; (b) Tsuji, F.; Miyake, Y.; Enomoto, H.; Horiuchi, M.; Mita, S. Eur. J. Pharmacol. 1998, 346, 81; (c) Tsuji, F.; Oki, K.; Fujisawa, K.; Okahara, A.; Horiuchi, M.; Mita, S. Life Sci. 1999, 64, PL51.
- 8. Horiuchi, M.; Fujimura, K.; Terashima, T.; Iso, T. *J. Chromatogr.* **1982**, 233, 123. ACE activity was measured according to the method of Ref. 8.
- Oya, M.; Baba, T.; Kato, E.; Kawashima, Y.; Watanabe, T. Chem. Pharm. Bull. 1982, 30, 440.
- 10. Frankel, M.; Gertner, D.; Jacobson, H.; Zilkha, A. J. Chem. Soc. 1960, 1390.
- 11. QSAR analysis is discussed in Supplementary data.
- 12. Conformational analysis (ϵ = 80) was done within MMFF94 to reach at 100 consecutive failures of stochastic search process with MOE (Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, Canada).
- 13. Thunnissen, M. M. G. M.; Nordlund, P.; Haeggström, J. Z. Nat. Struct. Biol. 2001, 8 131
- Thunnissen, M. M. G. M.; Andersson, B.; Samuelsson, B.; Wong, C.-H.; Haeggström, J. Z. FASEB J. 2002, 16, 1648.
- 15. GOLD (Version 3.1), Jones, G.; Willett P.; Glen, R. C. J. Mol. Biol. 1995, 245, 43.
- 16. CHARMm scripts of MM/GBSA calculation was obtained from Accelrys Inc (Accelrys Inc., 10188 Telesis Court, Suite 100, San Diego, CA, USA). Molecular dynamics simulation of 1 ns for protein-ligand complex, protein and ligand with 25 Å water cap or sphere (atoms 16 Å away fixed) around the ligand were performed.